
 1 

Performance Modeling of Hybrid MPI/OpenMP Scientific Applications on Large-
scale Multicore Cluster Systems 

 
 

Xingfu Wu and Valerie Taylor 
Department of Computer Science and Engineering  

Texas A&M University, College Station, TX 77843 
{wuxf, taylor}@cse.tamu.edu 

  
Abstract 
In this paper, we present a performance modeling framework 
based on memory bandwidth contention time and a 
parameterized communication model to predict the 
performance of OpenMP, MPI and hybrid programs with 
weak scaling on three large-scale multicore clusters: IBM 
POWER4, POWER5+ and BlueGene/P, and analyze the 
performance of these MPI, OpenMP and hybrid programs. 
We use STREAM memory benchmarks to provide initial 
performance analysis and model validation of MPI and 
OpenMP programs on these multicore clusters because the 
measured sustained memory bandwidth can provide insight 
into the memory bandwidth that a system should sustain on 
scientific applications with the same amount of workload per 
core. In addition to using these benchmarks, we also use a 
weak-scaling hybrid MPI/OpenMP large-scale scientific 
application: Gyrokinetic Toroidal Code in magnetic fusion to 
validate our performance model of the hybrid program on 
these multicore clusters. The validation results for our 
performance modeling method show less than 7.77% error 
rate in predicting the performance of hybrid MPI/OpenMP 
GTC on up to 512 cores on these multicore clusters.  
 

1. Introduction 
 
Today, the trend in high performance computing systems has 
been shifting towards cluster systems with multicore. 
Further, Multicore processors are usually configured 
hierarchically (e.g., multiple multicores compose a multi-
chip module to form a node) to form a compute node of 
parallel systems. While multicore presents significant new 
opportunities such as on-chip high inter-core bandwidth and 
low latency, it also presents new challenges in the form of 
inter-core resource conflict and contention. For many years, 
there has been considerable concern over the growing 
imbalance between memory subsystem performance and 
processor performance. Many of us fear that multicore 
continues to exacerbate memory bandwidth problems, 
however, the stall in processor frequency has diminished the 
corresponding worsening of memory latency in terms of 
processor-clocks [LL07].  

Levesque et al. [LL07] observed from the AMD 
architectural discussion that when excluding messaging 
performance, the primary source of contention when moving 
from single core to dual core is memory bandwidth, and 
confirmed this assumption by the testing with STREAM and 
Membench microbenchmarks. In our previous work [WT09, 
WT09a], we also found that memory bandwidth contention 
is the primary source of performance degradation for L2 
shared architectures such as CrayXT4 and IBM Power4 and 
Power5 systems using NAS Parallel benchmarks and large-
scale scientific applications such as the Gyrokinetic Toroidal 
Code (GTC) [ES05] when increasing the number of cores 
per node. Therefore, in this paper, we focus on scientific 
applications with memory bandwidth contention problems, 
and present a performance modeling framework based on 
memory bandwidth contention time on small number of 
cores to predict the performance on larger number of cores. 

Multicore clusters provide a natural programming 
paradigm for hybrid programs. Current hybrid parallel 
programming paradigms such as hybrid MPI/OpenMP need 
to efficiently exploit the potential offered by such multicore 
clusters. Generally, MPI is considered optimal for process-
level coarse parallelism and OpenMP is optimal for loop-
level fine grain parallelism. Combining MPI and OpenMP 
parallelization to construct a hybrid program is not only to 
achieve multiple levels of parallelism but also to reduce the 
communication overhead of MPI at the expense of 
introducing OpenMP overhead due to thread creation and 
increased memory bandwidth contention. In this paper, we 
analyze the performance of MPI, OpenMP and hybrid 
programs on three large-scale multicore clusters: IBM 
POWER4, POWER5 and BlueGene/P clusters, and present a 
performance modeling framework based on memory 
bandwidth contention time and parameterized 
communication model to predict the performance of 
OpenMP, MPI and hybrid programs with weak scaling on 
these multicore clusters. 

The experiments conducted for this work utilize multicore 
clusters with different number of cores per node. P655 has 8 
cores per node, Hydra [TSCF] has 16 cores per node, and 
BlueGene/P [ALCF] at Argonne National Lab (ANL) has 4 
cores per node. Further, each system has a different node 
memory hierarchy. We use the MPI and OpenMP STREAM 



 2 

memory benchmarks [McC] to provide initial performance 
analysis of MPI and OpenMP programs on these multicore 
clusters. In addition to using these benchmarks, we also use a 
hybrid MPI/OpenMP large-scale scientific application: a 3D 
particle-in-cell application GTC in magnetic fusion to 
validate our performance models of these MPI, OpenMP and 
hybrid programs. Our experimental results for our 
performance modeling mehtod show less than 7.77% error 
rate in predicting the performance of MPI and OpenMP GTC 
on up to 512 cores of these multicore clusters.  

The remainder of this paper is organized as follows. 
Section 2 discusses the architecture and memory hierarchy of 
three large-scale multicore clusters used in our experiments, 
and compares their performance using STREAM 
benchmarks. Section 3 proposes and discusses a performance 
modeling framework for hybrid MPI/OpenMP programs 
based on memory bandwidth contention time and a 
parameterized communication model. Section 4 validates our 
performance models using the hybrid GTC. Section 5 
discusses some related work and Section 6 concludes this 
paper.  

In the remainder of this paper, we assume that the job 
scheduler for each multicore cluster always dispatches one 
process to one core or one thread to one core. We describe 
the system configuration as MxN whereby M denotes the 
number of nodes with N cores per node.  All experiments 
were executed multiple times to ensure consistency of the 
performance data. Prophesy system [TW03] is used to 
collect all application performance data. 
 
2. Execution Platforms and Performance 
 

In this section, we briefly describe three large-scale 
multicore clusters used for our experiments, and use MPI 
and OpenMP STREAM memory benchmark [McC] to 
measure and compare sustainable memory bandwidth for 
MPI and OpenMP programs on these multicore clusters. 

2.1 Descriptions of Execution Platforms 
Details about three large-scale multicore clusters used for 
our experiments are given in Table 1. These clusters differ in 
the following main features: number of cores per node, 

configurations of node memory hierarchy, CPU speed, 
multicore processors, operating systems, and communication 
networks. 

SDSC DataStar P655 [SDSC] is an IBM POWER4 
cluster with 176 (8-way) compute nodes with 1.5GHz 
POWER4 and 16GB memory, and 96 (8-way) compute 
nodes with 1.7GHz POWER4 and 32GB memory. Each 
node of P655 has one MCM (multiple-chip module) with 4 
chips per MCM. The use of 8-way nodes for P655 is 
exclusive.  

Hydra at Texas A&M University Supercomputer Facility 
[TSCF] is an IBM POWER5+ cluster with 40 POWER5-575 
nodes, and each node has 32 GB of memory and 8 DCMs 
(Dual-Chip Modules) with a dual-core POWER5+ processor 
per DCM.  

Intrepid at Argonne Leadership Computing Facility 
[ALCF], Argonne National Lab, is an IBM BlueGene/P 
supercomputer with 40,960 quad-core nodes and 80 
terabytes of memory. Its computer nodes are each connected 
to multiple inter-node networks, including a high-
performance, low-latency 3D Torus, a highly scalable 
collective network, and a fast barrier network. 

 
Table 1. Specifications of three multicore cluster 

architectures 

Configurations Hydra P655 BlueGene/P 

Total Cores 640 2,176 163,840 

Total Nodes 40 272 40,960 

Cores/chip 2 2 4 

Cores / Node 16 8 4 

CPU type 1.9GHz  
POWER5+ 

1.5, 1.7GHz  
POWER4 

850MHz  
PowerPC 

Memory/Node 32GB 16, 32GB 2GB 

L1 Cache/CPU 64/32 KB 64/32 KB 32KB 

L2 Cache/chip 1.92MB 1.41MB 16 128B lines 

L3 Cache/chip 36MB 32MB 8MB 

Network Federation Federation 3D Torus 

Table 2.  Sustainable Memory bandwidth on P655  
Program Type MPI OpenMP 
Configuration 1x8 2x4 4x2 8x1 8 threads 
Memory bandwidth (MB/s) 16106.13 20132.66 26843.55 40265.32 18249.16 

 
Table 3. Sustainable memory bandwidth on Hydra 

Program Type MPI OpenMP 
Configuration 1x16 2x8 4x4 8x2 16x1 16 threads 
Memory bandwidth (MB/s) 32212.25 53687.09 80530.64 80530.64 80530.64 57063.45 



 3 

Table 4.  Sustainable Memory bandwidth on BlueGene/P  
Program Type MPI OpenMP 
Configuration 1x4 2x2 4x1 4 threads 
Memory bandwidth (MB/s) 16106.13 16106.13 16106.13 8977.32 

 

2.2 Sustainable Memory Bandwidth Comparison 
In this section, we use the MPI and OpenMP versions of the 
STREAM memory benchmark [McC] to investigate memory 
performance for different system configurations. The 
STREAM benchmark is a synthetic benchmark program, 
written in standard Fortran 77 and MPI for MPI version and 
in C and OpenMP for OpenMP version. It measures the 
performance of four long vector operations (double 
precision): COPY (i.e., a(i)=b(i)), SCALE (i.e., a(i)=q*b(i)), 
SUM (i.e., a(i)=b(i)+c(i)), and TRIAD (i.e., 
a(i)=b(i)+q*c(i)), and it is specifically intended to eliminate 
the possibility of data re-use (either in registers or caches). 
The TRIAD allows chained/overlapped/fused multiple/add 
operations. In this paper, we only use unit-stride TRIAD 
benchmark to measure the sustainable memory bandwidth. 
We find that most multicore clusters we used only support 
array sizes of at most 4M ( 222 ) with 8 bytes per double 
precision word because of lack of sufficient memory to start 
the benchmark. So we set the array size 4M for MPI and 
OpenMP STREAM benchmarks. 

Because P655 has 8 cores per node, so we use STREAM 
benchmarks to measure the sustainable bandwidths on 8 
cores. For different configurations using processor 
partitioning [WT07, WT09a], Table 2 shows the sustainable 
memory bandwidth increases from 16106.13MB/s to 
40265.32MB/s with decreasing the number of cores per node 
from 8 cores per node to 1 core per node for using 8 MPI 
processes because fewer MPI processes compete for 
memory. We see that the sustainable memory bandwidth for 
using 8 OpenMP threads is larger than that for using 8 MPI 
processes with the configuration 1x8, but smaller than the 
others.  

Table 3 shows the memory bandwidths for three 
configurations 16x1, 8x2 and 4x4 are the same on Hydra. 
These memory bandwidths are more than two times larger 
than that for the configuration 1x16. We also see that the 
sustainable memory bandwidth for using 16 OpenMP threads 
is larger than that for using 16 MPI processes with the 
configuration 1x16. Table 4 indicates no difference in 
memory bandwidths for difference configurations on 
BlueGene/P, and the memory bandwidth for using 4 
OpenMP threads is almost half less than that for using 4 MPI 
processes.  

In summary, Tables 2-4 present the sustainable memory 
bandwidths for MPI and OpenMP on the three multicore 
clusters. For all these systems, different system 
configurations impact the sustainable memory bandwidth. 
Hence, using fewer cores per node results in better 

sustainable memory bandwidth, and except on BlueGene/P, 
using the maximum number of cores per node never resulted 
in the highest sustainable memory bandwidth. 
 

3. Performance Models for Hybrid 
MPI/OpenMP Scientific Applications 
 

In this section, we propose a performance modeling 
framework based on memory bandwidth contention time and 
parameterized communication model, and use the 
performance modeling framework to model and predict the 
performance of OpenMP, MPI and hybrid programs. 
 

3.1 Performance Models for OpenMP Programs 
Figure 2 illustrates a simple OpenMP multithread process, 
where the program consists of sequential components S1 and 
S2 and parallelized components P1, P2, P3 and P4. The 
OpenMP program proceeds in the fork-join-like model. First, 
it processes S1, then the master thread (the process itself) 
forks three threads. The four threads process P1, P2, P3 and 
P4 in parallel. When they are finished, they are joined to the 
master thread. Then the program processes S2. Note that 
there is some overhead in forking and joining OpenMP 
threads. Since all the OpenMP threads belong to a single 
process, they share the same address space and it is easy to 
reference data that other threads have updated.  
 

 
Figure 2. One multithreads process 

As discussed above in Section 2.3, Tables 2-4 indicate 
that sustainable memory bandwidth decreases with 
increasing number of processors per node except on 
BlueGene/P. The experimental results also indicate that the 
application execution time decreases with increasing the 
number of processors per node [WT07]. In [WT09, WT09a], 
we found that memory bandwidth contention is the primary 
source of performance degradation for L2 shared 
architectures when increasing the number of processors per 
node. In [LL07], the primary source of contention when 



 4 

moving from single core to dual core on AMD Opteron 
architecture is memory bandwidth, and a simple performance 
model for a sequential program was proposed to extrapolate 
the quad-core performance by assuming the time spent in the 
execution component remains the same, but the time spent in 
memory bandwidth contention will increase proportional to 
the reduction in effective memory bandwidth per core. In 
this section, we generalize the performance model to support 
parallel programs (OpenMP, MPI or hybrid) to extrapolate 
the performance of the multicore node (which consists of one 
or several multicores) by enumerating the following 
assumptions of our model: 

i. The primary source of performance difference 
between single- and multi-core runs is memory 
bandwidth contention when excluding message 
passing performance. 

ii. Computation time of a parallel program can be 
broken into the portion that is stalled on shared 
resources (memory bandwidth) and the portion that is 
stalled on non-shared resources. 

iii. For an application with a fixed workload per 
processor core, assume that the time spent in the 
computation component per core ( CT ) remains the 
same, however, the time spent in memory bandwidth 
contention ( MT ) will increase proportional to the 
reduction in effective memory bandwidth per core. 

The assumption (i) was confirmed in [LL07, WT09, 
WT09a], which means that our focus is on scientific 
applications with memory bandwidth contention problems. 
I/O performance is not considered in these kinds of 
applications. The assumption (ii) is consistent to that CPU 
execution time equals CPU time plus memory stall time 
defined by Hennessy and Patterson [HP03].   

The assumption (iii) was confirmed in [WT09a, WT09], 
especially in [WT09a], when excluding message passing 
performance, the decrease percentage for the bandwidth of 
the data traffic between memory and D1 cache, between L2 
and D1 cache or between L2 and memory is similar to the 
increase percentage for the total execution times of 8 NAS 
parallel benchmarks with classes B and C when using from 1 
core per node, 2 cores per node to 4 cores per node, where 
the workload per core remains the same.  

If the assumptions above hold true, we expect execution 
time to obey the following relationships: 

MC

MC

TTT
TTT

22

1

!+=

+=
                                        (1)                                                                       

Where  1T and 2T denote the execution time on one core and 

two cores, respectively; 2!  denotes memory bandwidth ratio 
which is the memory bandwidth for the baseline (one core) 
divided by the memory bandwidth for the target (two cores) 
( 12 >!  because of memory bandwidth contention. We use 
the STREAM memory benchmark to measure the sustained 

memory bandwidths on one or two cores to calculate the 
memory bandwidth ratio.) From Equation 1, we have 

1

1

2

12
1

2

12

!
!

!=

!
!

=

"

"

TTTT

TTT

C

M                                          (2)                                                                    

We can use Equation 2 to predict the execution time 4T on 

four cores as follows. Assume that 4!  denotes memory 
bandwidth ratio, which is the memory bandwidth for the 
baseline (one core) divided by the memory bandwidth for the 
target (four cores). From the assumption (iii), we have  

MC TTT 44 !+=                              (3)                                                                                

From Equations 2 and 3, we have the execution time on four 
cores 

 

1
)1(

1
)
1

(
2

12
41

2

12
4

2

12
14 !

!
!+=

!
!

+
!
!

!=
"

"
"

"
"

TTTTTTTTT          (4)                                           

This demonstrates how to use the performance model based 
on performance data on one core or two cores to predict the 
performance on four or more cores. Note that the assumption 
(iii) means that the performance model is only for weak 
scaling applications where the time spent in the computation 
component per core remains the same. The memory 
bandwidth ratios 2!  and 4!  for OpenMP programs are only 
measured once, then can be used for modeling any OpenMP 
programs on the system. We can generalize Equation 4 to a 
general case for using n cores. Assume that 

! 

" n  denotes 
memory bandwidth ratio, which is the memory bandwidth 
for the baseline (one core) divided by the memory bandwidth 
for the target (n cores). From Equation 4, we have the 
general model for the application execution time on n cores 

! 

Tn = T1 + (" n #1)
T2 #T1
" 2 #1

 

This equation indicates that, given the fixed workload per 
core, the equation is used to predict the application 
performance on n cores based on the performance for single 
and dual cores and the memory bandwidth ratios for dual 
(

! 

" 2) and many cores (

! 

" n ), where the memory bandwidth 
ratios are associated with the sustained memory bandwidths 
on 1, 2 and n cores, which provide insight into the memory 
bandwidth that a system should sustain on various classes of 
scientific applications. Therefore, this performance model 
will be helpful to understand the application performance on 
multi- and many cores. 

The performance modeling method for OpenMP 
programs can also be applied to computation components of 
a MPI program for the given problem size and number of 
cores. Given problem size and number of cores, using 
processor partitioning [WT07, WT09a], we measure the 
sustainable memory bandwidths for MPI STREAM memory 



 5 

benchmark on three multicore clusters, P655, Hydra, and 
BlueGene/P as shown in Tables 2-4, then use them to 
calculate the memory bandwidth ratio 2!  and 4!  (the 
baseline bandwidth for using one core per node). Assume 
that 1T and 2T denote the computation times of a MPI 
program for using one core per node and two cores per node, 
respectively. Because of using processor partitioning for the 
given number of cores, the time spent in the computation 
component per core remains the same. Therefore, we can use 
Equation 4 to predict the computation time of the MPI 
program for using four cores per node. For communication 
component of the MPI program, we can parameterize the 
communication component based on each MPI subroutine to 
generate a parameterization model. We will discuss the 
communication parameterization model in detail in the 
following section (Section 3.2).  

 
3.2 Performance Models for Hybrid MPI/OpenMP 
Programs 
For hybrid MPI/OpenMP programs, modeling their 
performance is more complicated because of so many 
different combinations of MPI processes and OpenMP 
threads. In previous work [WT09], for the MPI GTC, we 
found that using fewer processors per node resulted in the 
better performance, and using one processor per node 
resulted in the best performance for the MPI version of GTC. 
In this section, for the sake of simplicity, we consider using 
one MPI process per node and one OpenMP thread per core 
on each node to model the performance of the hybrid 
programs executed on these multicore clusters.  

 
Figure 3.  One multithreads process per node 

Figure 3 illustrates one simple OpenMP-multithread MPI 
process per node. To utilize the shared memory feature of 
multicore nodes, we run one MPI process with OpenMP 
multithreads on each node so that intranode communication 
uses shared memory and internode communication uses 
message passing. This can take advantage of inter-core high 
bandwidth and low latency provided by multicore. As shown 
in Figure 3, the hybrid program is a SPMD program. The 
program execution consists of two MPI processes with four 
OpenMP threads per process. Modeling the performance of 
the hybrid program requires modeling its computation and 
communication. We can use the performance model for 

OpenMP programs discussed in Section 3.1 to model the 
OpenMP performance of the hybrid program. To model the 
communication of the hybrid program, we just consider 
internode MPI communication cost. The intranode 
communication cost (caused by OpenMP directives) is 
already included in the performance model for OpenMP 
programs. 
    For the given problem size, number of cores, and system, 
we define that the factor α for overlapping computation and 
communication for the hybrid program is  

ionTimeCommunicatnTimeComputatio
tionTimeTotalExecu

+
=!  

    The overlapping factor α reflects the overlapping rate 
between the computation and communication within a hybrid 
program, and it is associated with the problem size, number 
of cores and system used. To compute the overlapping 
factor, we need three measurements for the total execution 
time, the computation time and communication time. 

    Assume that mpiomp TT , represent the performance models 

for intranode OpenMP performance and internode MPI 
communication cost, respectively. When we take the 
overlapping factor into account, we have the performance 
model T of the hybrid program   

)( mpiomp TTT +=!   

 

 
 

Figure 4. Framework for modeling hybrid 
MPI/OpenMP programs 

 
Figure 4 present a framework for modeling hybrid 
MPI/OpenMP programs. Modeling MPI or OpenMP 
programs discussed in the previous section (Section 3.1) is 
considered as a special case of the framework above the 
horizontally dashed line shown in Figure 4. Modeling an 



 6 

OpenMP-only program requires two components with solid 
arrows (green); modeling a MPI-only program needs four 
components with dashed arrows (blue). Note that, To model 
a hybrid MPI/OpenMP program, MPI model in Figure 4 
means MPI communication parameterization model (with 
communication database), because OpenMP model includes 
all computation components.For example, for the given 
hybrid MPI/OpenMP GTC shown in Section 4, because the 
workload per core remains the same (weak scaling), the 
model ompT  can be generated by using the modeling method 

from Section 3.1. Because there are few (only 12) MPI 
subroutines such as MPI_Sendrecv, MPI_Allreduce, 
MPI_Reduce, MPI_Allgather, MPI_Gather, MPI_Bcast, 
MPI_Send, MPI_Recv, MPI_Comm_size, 
MPI_Comm_rank, MPI_Init and MPI_Finalize in the GTC 
code (Note that this is a general case for a MPI program), we 
can parameterize the MPI communications based on these 
subroutines as follows. For a given number of cores, 
MPI_Init and MPI_Finalize can only be called once in a MPI 
program, so we can manually count how many calls and how 
big the message size for each MPI subroutine to form a 
communication parameterization model. Generally, this is a 
straightforward method to generate a parameterization model 
for the communication cost of a MPI application. We use the 
popular Intel’s MPI benchmark [IMB] to measure the 
performance of each MPI subroutine with different message 
sizes on different number of cores on each multicore cluster, 
and store the performance data to the Communication 
Database shown in Figure 4. This kind of measurement just 

is done once for each cluster. Finally, we use the 
communication parameterization model to compute the total 
communication time based on the performance data from the 
Communication Database. 
 
4. Case Study: a Hybrid MPI/OpenMP 
Scientific Application GTC 
 
In this section, we use the hybrid GTC to validate our 
performance model on the multicore clusters. 

4.1 Descriptions of Hybrid GTC 
GTC [ES05] is a 3D particle-in-cell application developed at 
the Princeton Plasma Physics Laboratory to study turbulent 
transport in magnetic fusion. GTC is currently the flagship 
SciDAC fusion microturbulence code written in Frotran90, 
MPI and OpenMP. The test case for GTC studied in this 
paper is 100 particles per cell and 100 time steps.  
 

4.2. Performance Modeling Validation 
We start to use the scientific application GTC 
(MPI/OpenMP) to validate our performance model for 
MPI/OpenMP versions of the application on the multicore 
clusters, and use the performance model to calculate and 
compare the memory bandwidth contention time for 
MPI/OpenMP programs. Note that, the workload per 
processor (or core) remains the same for GTC.  

 

Table 9. Predicted and Actual Performance of OpenMP GTC on P655 
Metrics 2 threads 4 threads 8 threads 
Actual Execution Time (s) 1103.37 1202.70 1246.04 
Memory Bandwidth Ratio !  1 (baseline) 1.75 2.29 

Predicted  Execution Time (s) baseline baseline 1274.22 
Predicted Error Rate -- -- 2.26% 
ctime (s) 970.93 
mtime (s) 132.44 

 
Table 10. Predicted and Actual Performance of OpenMP GTC on Hydra 

Metrics 2 threads 4 threads 8 threads 16 threads 
Actual Execution Time (s) 917.91 980.9 1022.83 1153.07 
Memory Bandwidth Ratio !  1 (baseline) 3.41 7.52 9.21 

Predicted  Execution Time (s) baseline baseline 1088.34 1132.52 
Predicted Error Rate -- -- 6.40% 1.70% 
ctime (s) 891.77 
mtime (s) 26.14 

 



 7 

Table 11. Predicted and Actual Performance of OpenMP GTC on BlueGene/P 
Metrics 2 threads 4 threads 
Actual Execution Time (s) 3279.74 3631.99 
Memory Bandwidth Ratio !  1 (baseline) 1.98 

Predicted  Execution Time (s) baseline baseline 
Predicted Error Rate -- -- 
ctime (s) 2920.30 
mtime (s) 359.44 

 

4.2.1 OpenMP Programs 
To illustrate how to use the performance model in Section 
3.1, we use OpenMP GTC to test our performance model on 
Hydra, P655 and BlueGene/P. We use P655 as an example to 
illustrate how to generate a performance model in detail as 
follows: 
We use OpenMP STREAM memory benchmark to measure 
sustainable memory bandwidths for 2 to 8 threads on a 
compute node on P655, and use the memory bandwidth for 2 
threads as a baseline to calculate the bandwidth ratio !  
shown in Table 9. We assume the time spent in the 
computation component per core is CT , and the time spent 

in memory bandwidth contention is MT  for 2 threads (Note 

that comparing to MT , the overhead for forking and joining 
the threads is very small.) Then, we have 

1103.37=+ MC TT                         (5)                                                             

Because the workload per core remains the same for GTC, 
like Equation 3, we have the following equation for 4 threads 

 70.2021*75.1 =+ MC TT                     (6)                                                                

From Equations 5 and 6, we have  

44.132=CT  and 93.709=MT  

From Equation 6, we can predict the performance for 8 
threads as follows: 

(s) 1274.22  132.44 * 2.29  970.93*29.2 =+=+ MC TT  

As shown in Table 9, the predicted error rate is only 2.26% 
for 8 threads. The same method is also applied to other 
multicore clusters shown in Tables 10 and 11. Table 10 
shows that the predicted error rate is less than 6.5% for 
predicting the performance on 8 and 16 threads. It is 
interesting to see that Hydra has the smallest memory 
bandwidth contention time for OpenMP GTC. 

4.2.2 MPI Programs 
Similarly, in this section, we use MPI GTC to test our 
performance model on Hydra, P655 and BlueGene/P. For 
P655, Table 2 shows the sustainable memory bandwidths 
using MPI STREAM benchmark. We use the memory 
bandwidth for 8 nodes with 1 core per node as a baseline to 
calculate the bandwidth ratio r shown in Table 12.  

As shown in Table 12, the predicted error rate is only 
1.05% for the 2x4. We can also use the performance model 
to predict the performance for the 1x8 is 1132.38 seconds, 
and its predicted error rate is just 1.99%. The same method is 
applied to other multicore clusters as showed in Tables 13-
14. The memory bandwidth ratio r in Tables 13-14 are 
calculated from Tables 3-4 respectively. 

Table 13 shows that the predicted error rate is 4.7% for 
predicting the performance for the 1x16. The difficulty for 
our model to deal with is the same memory bandwidth for 
the 16x1, 8x2 and 4x4 although their execution times are a 
little bit different. We just pick the execution time for the 
16x1 as a baseline. This case also happens on BlueGene/P 
shown in Table 14. Thus, we will need to consider other 
factors for our performance model to deal with this case in 
the future work.  

Compare Table 12 with Table 9, on P655, we find that the 
baseline memory bandwidth contention time for MPI GTC is 
almost six times smaller than that for OpenMP GTC because 
of OpenMP overhead due to thread creation and increased 
memory bandwidth contention, however, the pure CPU 
computation time for MPI GTC is larger than that for 
OpenMP GTC. Compare Table 13 with Table 10, on Hydra, 
the baseline memory bandwidth contention time for MPI 
GTC is over two times larger than that for OpenMP GTC. 
This is consistent with Table 3 where the sustainable 
memory bandwidth for using 16 OpenMP threads is larger 
than that for any configurations for using 16 MPI processes. 

 
 
 
 



 8 

Table 12.  Predicted and Actual Performance on 8 processors on P655 
Configuration 1x8 2x4 4x2 8x1 
Actual Computation Time (s) 1155.38 1133.15 1110.18 1099.08 
Memory Bandwidth Ratio r 2.50 2.00 1.50 1(baseline) 
Predicted  Computation Time (s) 1132.38 1121.28 baseline baseline 
Predicted Error Rate 1.99% 1.05% -- -- 
ctime (s) 1076.88 
mtime (s) 22.2 

 
Table 13. Predicted and Actual Performance on 16 processors on Hydra 

Configuration 1x16 2x8 4x4 8x2 16x1 
Actual Computation Time (s) 981.62 967.99 944.80 940.02 938.10 
Memory Bandwidth Ratio r 2.5 1.5 1 1 1 (baseline) 
Predicted  Computation Time (s) 1027.77 baseline -- -- baseline 
Predicted Error Rate 4.70% -- -- -- -- 
ctime (s) 878.32 
mtime (s) 59.78 

 
Table 14.  Predicted and Actual Performance on 4 processors on BlueGene/P  

Configuration 1x4 2x2 4x1 
Actual Execution Time (s) 3237.26 3237.29 3237.33 
Memory Bandwidth Ratio r 1 1 1(baseline) 

 

 
                             (a) 16 MPI processes                                      (b) 32 MPI processes                         (c) 64 MPI processes 

Figure 6. Communication percentage of each MPI subroutine for hybrid GTC on P655 
 

4.2.3 Hybrid MPI/OpenMP Programs 
In this section, we apply our performance modeling 
framework shown in Figure 4 to model the performance of 
the hybrid MPI/OpenMP GTC on the three multicore 
clusters.  

In Section 4.2.1, we discussed the OpenMP models for 
the OpenMP GTC on the three clusters. We use the OpenMP 
models to model the performance of the hybrid GTC because 
the hybrid GTC is a weak scaling application. Now we 
mainly focus on generating a parameterized communication 
model for the hybrid GTC. As we discussed in Section 3.2, 

there are few (only 12) MPI subroutines such as 
MPI_Sendrecv, MPI_Allreduce, MPI_Reduce, 
MPI_Allgather, MPI_Gather, MPI_Bcast, MPI_Send, 
MPI_Recv, MPI_Comm_size, MPI_Comm_rank, MPI_Init 
and MPI_Finalize in the GTC code, we can parameterize the 
MPI communications based on these subroutines to build the 
parameterized communication model for the application. We 
use IPM [IPM] to collect MPI communication performance 
and its profiling (message size and number of calls). We 
observe that the MPI subroutines MPI_Allreduce, 
MPI_Sendrecv and MPI_Allgather dominate more than 98% 



 9 

of the total communication time shown in Figure 6, which 
shows the communication percentage of each MPI 
subroutine for the hybrid GTC on P655. Note that there is 
one MPI process per node and 8 OpenMP threads per node 
for the execution of the hybrid program because P655 has 8 
processors per node. Because MPI_Allreduce, 
MPI_Sendrecv and MPI_Allgather dominate the 
communication time, we focus on the three MPI subroutines 
in our discussion.  

 
Table 15. MPI profiling of GTC for 16, 32, and 64 MPI 

processes  
16 processes Message Size (bytes) Number of Calls 

MPI_Allreduce 4 3200 

MPI_Allreduce 364 3600 

MPI_Allreduce 1168164 3200 

MPI_Allreduce 20 1600 

MPI_Sendrecv 129796 28800 

MPI_Sendrecv 8 6400 

MPI_Allgather 519184 3200 

32 processes Message Size (bytes) Number of Calls 

MPI_Allreduce 4 6400 

MPI_Allreduce 364 7200 

MPI_Allreduce 1168164 6400 

MPI_Allreduce 20 3200 

MPI_Sendrecv 129796 57600 

MPI_Sendrecv 8 12800 

MPI_Allgather 259592 6400 

64 processes Message Size (bytes) Number of Calls 

MPI_Allreduce 4 12800 

MPI_Allreduce 364 14400 

MPI_Allreduce 1168164 12800 

MPI_Allreduce 20 6400 

MPI_Sendrecv 129796 115200 

MPI_Sendrecv 8 25600 

MPI_Allgather 129796 12800 

 
Table 15 shows the main MPI profilings of the hybrid 

GTC for 16, 32 and 64 MPI processes. MPI_Allreduce with 
four different message sizes is performed for each program 
execution, however, the number of calls for MPI_Allreduce 

is double with doubling the number of MPI processes. 
Similarly, MPI_Sendrecv with four different message sizes 
is performed for each program execution, however, the 
number of calls for MPI_Sendrecv is doubled with doubling 
the number of MPI processes. For MPI_Allgather, the 
message size decreases by half and the number of calls is 
doubled with doubling the number of MPI processes because 
of the fixed total message size (array size). Based on the 
communication characteristics of the hybrid GTC shown in 
Table 15, we can manually parameterize the communication 
time for each MPI subroutine by the product of the time for 
each MPI subroutine with the given message size and 
number of processors and the number of calls. Now, we have 
the parameterized communication model. 

For internode communication, we use Intel MPI 
benchmarks to measure the performance for each MPI 
subroutine with different message sizes on different number 
of cores, then store them to the Communication database. 
For each MPI subroutine, we query the Communication 
database to get the communication time for a message size 
on a gived number of nodes, then use the product of the time 
and the number of calls for the subroutine to calculate its 
total communication time. Based on the performance data for 
IMB from the Communication database, we can use the 
parameterized communication model to calculate the total 
communication time. 

Because of the use of blocking communications in the 
whole GTC, we observe that the overlapping factor for 
computation and communication is almost 1, so we use the 
factor to generate our performance model for GTC. In the 
following, we present the experimental results for our 
performance models to predict the performance of the hybrid 
GTC on P655, Hydra and BlueGene/P. 

Table 16 shows the predicted performance of hybrid GTC 
using our performance model on P655. Because the 
workload per core remains the same for GTC (weak scaling), 
we use the OpenMP model for OpenMP GTC on 8 cores as 
baseline, then sum the baseline OpenMP performance and 
total MPI communication time to predict the performance of 
the hybrid GTC. The error rate is less than 5.58%. 

Table 17 shows the predicted performance of hybrid GTC 
using our performance model on Hydra. We use the 
OpenMP model for OpenMP GTC on 16 cores as baseline, 
then sum the baseline OpenMP performance and total MPI 
communication time to predict the performance of the hybrid 
GTC. The error rate is less than 7.77%. 

 

Table 16. Predicted performance of hybrid GTC on P655 
#Cores 8 16 32 64 128 256 512 

Actual Runtime (s) 1246.04 1306.89 1363.96 1370.24 1388.23 1347.04 1424.53 
Prediction (s) 1274.22 1280.15 1288.00 1301.71 1332.41 1397.19 1461.03 

Error (%) 2.26% 2.05% 5.57% 5.00% 4.02% 3.72% 2.56% 
     



 10 

Table 17. Predicted performance of hybrid GTC on Hydra 
#cores 16 32 64 128 256 512 
Actual Runtime (s) 1153.07 1200.66 1239.26 1225.91 1210.45 1190.5 

Prediction (s) 1132.52 1137.27 1143.07 1154.66 1175.10 1230.03 

Error (%) 1.70% 5.28% 7.76% 5.81% 2.92% 3.32% 

 
Table 18. Predicted performance of hybrid GTC on BlueGene/P 

#Cores 4 8 16 32 64 128 256 512 
Actual Runtime (s) 3631.99 3681.05 3716.67 3738.52 3771.67 3761.81 3741.22 3742.49 

Prediction (s) -- 3644.98 3659.62 3685.78 3707.14 3794.42 3927.34 3906.22 

Error (%) -- 0.98% 1.54% 1.41% 1.71% 0.87% 4.97% 4.37% 
 

Table 18 shows the predicted performance of hybrid GTC 
using our performance model on BlueGene/P. We use the 
OpenMP model for OpenMP GTC on 4 cores as baseline, 
then sum the baseline OpenMP performance and total MPI 
communication time to predict the performance of the hybrid 
GTC. The error rate is less than 4.98%. 

In summary, we apply our performance modeling 
framework for weak-scaling hybrid programs to model and 
predict the performance of the hybrid GTC on up to 512 
cores on P655, Hydra and BlueGene/P with less than 7.77% 
error rate. This indicates that our modeling method is 
practical and accurate. 

 
6. Related Work 
Levesque et al [LL07] observed that the primary source of 
contention when moving from single core to dual core on 
AMD Opteron architecture is memory bandwidth, and 
proposed a simple performance model for sequential 
programs to extrapolate the quad-core performance by 
assuming the time spent in the execution component remains 
the same, but the time spent in memory bandwidth 
contention will increase proportional to the reduction in 
effective memory bandwidth per core. In this paper, we 
generalize the performance model for OpenMP and hybrid 
parallel programs to extrapolate the performance of the 
multicore node (which consists of one or several multicores).  

Barker et al [BD09] discussed using performance 
modeling to design large scale systems throughout their life 
cycle from early design through production use, presented an 
application-centric performance model development 
framework, and addressed the importance of performance 
modeling. Our performance model has more focus on 
multicore. 

Adhianto and Chapman [AC07] proposed a cost efficient 
approach to model and evaluate parallel OpenMP, MPI and 
hybrid MPI + OpenMP with reasonable accuracy based on a 
combination of static analysis (using the OpenUH compiler) 
and feedback from runtime benchmarks (Sphinx and 
Perfsuite) for both communication and multithreading 

efficiency measurement, and predicted the performance of a 
parallel matrix multiply using Cannon algorithm.  

Aversa et al. [AM05] described simulation-based 
techniques for performance prediction of hybrid 
MPI/OpenMP code in different working conditions using 
HeSSE (Heterogeneous System Simulation Environment), 
and predicted the performance of a parallel N-body code on 
a SMP cluster.  

There are many approaches on modeling MPI 
communication cost, such as LogP [CK96], LogGP[AI97], 
and so on, we just take a straightforward empirical method to 
manually parameterize the communication time for each 
MPI subroutine by the product of the time for each MPI 
subroutine with the given message size and number of 
processors and the number of calls on the given system to 
generate a parameterized communication model, then based 
on the performance data for each MPI subroutine stored in 
the Communication database, we can calculate the total 
communication time on the system. 
 
7. Conclusions 
 
In this paper, we analyzed and compared the performance of 
MPI, OpenMP and hybrid programs on three large-scale 
multicore clusters, IBM POWER4, POWER5+ and 
BlueGene/P clusters using MPI and OpenMP STREAM 
benchmarks and the hybrid MPI/OpenMP GTC, and 
presented a practical performance modeling framework for 
weak-scaling hybrid MPI/OpenMP programs based on 
memory bandwidth contention time and parameterized 
communication model to model and predict the performance 
of hybrid and OpenMP GTC on these multicore clusters. The 
experimental results for our performance modeling mehtod 
showed less than 7.77% error rate in predicting the 
performance of hybrid and OpenMP GTC on up to 512 cores 
on the three multicore clusters. We also used the 
performance model to calculate and compare the memory 
bandwidth contention times for MPI and OpenMP GTC.  



 11 

     For weak-scaling scientific applications, the measured 
sustained memory bandwidth can provide insight into the 
memory bandwidth that a system should sustain on these 
scientific applications with the same amount of workload per 
core. However, for strong scaling scientific applications, it is 
hard to measure the sustained memory bandwidth for the 
different amount of decreased workload per core. This is a 
limitation for our performance modeling framework. We 
believe that our performance modeling framework can be 
applied to any weak-scaling hybrid MPI/OpenMP programs 
with memory bandwidth contention problems. Our future 
work will focus on exploring performance modeling for 
strong scaling scientific applications, and investigating 
performance-power trade-off models in our MuMI project 
[MuMI]. 
 
 
8. Acknowledgements 
 
This work is supported by NSF grant CNS-0911023 and the 
Award No. KUS-I1-010-01 made by King Abdullah 
University of Science and Technology (KAUST). The 
authors would like to acknowledge Argonne Leadership 
Computing Facility for the use of BlueGene/P under DOE 
INCITE project “Performance Evaluation and Analysis 
Consortium End Station”, the SDSC for the use of DataStar 
P655 under TeraGrid project TG-ASC040031, and TAMU 
Supercomputing Facilities for the use of Hydra. We would 
also like to thank Stephane Ethier from Princeton Plasma 
Physics Laboratory and Shirley Moore from University of 
Tennessee for providing the GTC code. 
 

References 
[AC07] L. Adhianto and B. Chapman, Performance 

Modeling of Communication and Computation in Hybrid 
MPI and OpenMP Applications, Simulation Modeling 
Practice and Theory, Vol 15, 2007. 

[AI97] A. Alexandrov, M. Ionescu, K. Schauser, and C. 
Scheiman, LogGP: Incorporating Long Messages into the 
LogP Model for Parallel Computation, Journal of Parallel 
and Distributed Computing, 44(1), 1997. 

[ALCF] Argonne Leadership Computing Facility 
BlueGene/P (Intrepid), http://www.alcf.anl.gov/resources. 

[AM05] R. Aversa, B. Martino, M. Rak, S. Venticinque, and 
U. Villano, Performance Prediction Through Simulation 
of a Hybrid MPI/OpenMP Application, Parallel 
Computing, Vol. 31, 2005. 

[BD09] K. Barker, K. Davis, A. Hoisie, D. Kerbyson, M. 
Lang, S. Pakin, and J. C. Sancho, Using Performance 
Modeling to Design Large-scale System, IEEE Computer, 
Nov. 2009 

[CK96] D. Culler, R. Karp, D. Patterson, A. Sahay, E. 
Santos, K. Schauser, R. Subramonian, and T. Eicken, 

LogP: A Practical Model of Parallel Computation, 
Communication of the ACM, Vol. 39, No. 11, 1996. 

[ES05] S. Ethier, First Experience on BlueGene/L, BlueGene 
Applications Workshop, ANL, April 27-28, 2005. 
http://www.bgl.mcs.anl.gov/Papers/GTC_BGL_20050520
.pdf. 

[HP03] J. Hennessy and D. Patterson, Computer 
Architecture: A Quantitative Approach, Morgan 
Kaufmann Publishers, 2003. 

[IMB] Intel MPI Benchmarks, Users Guide and Methodolgy 
Description (Version 2.3), http://www.intel.com/cd/ 
software/products/asmona/eng/cluster/mpi/219848.htm.  

[IPM] IPM: Integrated Performance Monitoring, 
http://www.sdsd. edu/ us/tools/ top/ipm/. 

[JJ03] G. Jost, H. Jin, D. Mey, and F. Hatay, Comparing the 
OpenMP, MPI, and Hybrid Programming Paradigms on 
an SMP Cluster, the Fifth European Workshop on 
OpenMP (EWOMP03), September 2003. 

[LL07] J. Levesque, J. Larkin, M. Foster, J. Glenski, G. 
Geissler, S. Whalen, B. Waldecker, J. Carter, D. Skinner, 
H. He, H. Wasserman, J. Shalf, H. Shan, and E. 
Strohmaier, Understanding and Mitigating Multicore 
Performance Issues on the AMD Opteron Architecture, 
LBNL-62500, March 7, 2007 

[McC] John D. McCalpin, STREAM: Sustainable Memory 
Bandwidth in High Performance Computers, 
http://www.cs. virginia.edu/stream. 

[MuMI] MuMI project, Multicore application Modeling 
Infrastructure (MuMI), http://www.mumi-tool.org. 

[OH07] K. Olukotun, L. Hammond, and J. Laudon, Chip 
Multiprocessor Architecture: Techniques to Improve 
Throughput and Latency, Morgan & Claypool Pub., 2007. 

[SDSC] SDSC DataStar, http://www.sdsc.edu/user_services 
/datastar/. 

[TSCF] Texas A&M University Supercomputer Facility 
Hydra, http://sc.tamu.edu/systems/hydra. 

[TW03] Valerie Taylor, Xingfu Wu, and Rick Stevens, 
Prophesy: An Infrastructure for Performance Analysis and 
Modeling System of Parallel and Grid Applications, ACM 
SIGMETRICS Performance Evaluation Review, Volume 
30, Issue 4, 2003. 

[WT07] Xingfu Wu and Valerie Taylor, Processor 
Partitioning: An Experimental Performance Analysis of 
Parallel Applications on SMP Cluster Systems, the 19th 
International Conference on Parallel and Distributed 
Computing and Systems (PDCS 2007), Nov. 19-21, 2007.  

[WT09a] Xingfu Wu and Valerie Taylor, Using Processor 
Partitioning to Evaluate the Performance of MPI, 
OpenMP and Hybrid Parallel Applications on Dual- and 
Quad-core Cray XT4 Systems, the 51st Cray User Group 
Conference (CUG2009), Atlanta, May 4-7 2009. 

[WT09] Xingfu Wu, Valerie Taylor, Charles Lively, and 
Sameh Sharkawi, Performance Analysis and Optimization 
of Parallel Scientific Applications on CMP Cluster 
Systems, Scalable Computing: Practice and Experience, 
Vol. 10, No. 1, 2009. 


