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Abstract

Intel Xeon Phi is a recently released high-performance coprocessor which features 61 cores each sup-
porting 4 hardware threads with 512-bit wide SIMD registers achieving a peak theoretical performance
of 1Tflop/s in double precision. Many scientific applications involve operations on large sparse matrices
such as linear solvers, eigensolver, and graph mining algorithms. The core of most of these applications
involves the multiplication of a large, sparse matrix with a dense vector (SpMV). In this paper, we
investigate the performance of the Xeon Phi coprocessor for SpMV. We first provide a comprehensive
introduction to this new architecture and analyze its peak performance with a number of micro bench-
marks. Although the design of a Xeon Phi core is not much different than those of the cores in modern
processors, its large number of cores and hyperthreading capability allow many application to saturate
the available memory bandwidth, which is not the case for many cutting-edge processors. Yet, our per-
formance studies show that it is the memory latency not the bandwidth which creates a bottleneck for
SpMV on this architecture. Finally, our experiments show that Xeon Phi’s sparse kernel performance is
very promising and even better than that of cutting-edge general purpose processors and GPUs.

1 Introduction

Given a large, sparse, m × n matrix A, an input vector x, and a cutting edge shared-memory multi/many
core architecture Intel Xeon R© Phi, we are interested in analyzing the performance obtained while computing

y← Ax

in parallel. The computation, known as the sparse-matrix vector multiplication (SpMV), and some of its
variants, such as the sparse-matrix matrix multiplication (SpMM), form the computational core of many
applications involving linear systems, eigenvalues, and linear programs, i.e., most large scale scientific appli-
cations. For this reason, they have been extremely intriguing in the context of high performance comput-
ing (HPC). Efficient shared-memory parallelization of these kernels is a well studied area [1, 2, 3, 9, 18],
and there exist several techniques such as prefetching, loop transformations, vectorization, register, cache,
TLB blocking, and NUMA optimization, which have been extensively investigated to optimize the perfor-
mance [7, 11, 12, 18]. In addition, company-built support is available for many parallel shared-memory
architectures, such as Intel’s MKL and NVIDIA’s cuSPARSE. Popular 3rd party sparse matrix libraries
such as OSKI [17] and pOSKI [8] also exist.

Intel Xeon Phi is a new coprocessor with many cores, hardware threading capabilities, and wide vector
registers. The novel architecture is of interest for HPC community: the Texas Advanced Computing Center
has built the Stampede cluster which is equipped with Xeon Phi and many other computing centers are fol-
lowing. Furthermore, some effort has been pushed to have a fast MPI implementation [13]. Although Intel
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Xeon Phi has been released recently, performance evaluations already exist in literature [6, 15, 16]. Eisen-
lohr et al. investigated the behavior of dense linear algebra factorization on Xeon Phi [6] and Stock et al.
proposed an automatic code optimization approach for tensor contraction kernels [16]. Both of these works
work on dense and regular data. in a previous work, two of the authors evaluates the scalability of graph al-
gorithms, coloring and breadth first search (BFS) [15]. None of these works give absolute performance values
and to the best of our knowledge there exist no such work in the literature. Although similar to BFS, SpMV
and SpMM are different kernels (in terms of synchronization, memory access, and load balancing), and as
we will show, the new coprocessor is very promising and can even perform better than existing cutting-edge
CPUs and accelerators while handling sparse linear algebra.

Accelerators/coprocessors are designed for specific tasks. They do not only achieve a good performance
but also reduce the energy usage per computation. Up to now, GPUs have been successful w.r.t. these
criteria and they reported to perform well especially for regular computations. However, the irregularity
and sparsity of SpMV-like kernels create several problems for these architectures. In this paper, we analyze
how Xeon Phi performs on two popular sparse linear algebra kernels, SpMV and SpMM. [4] studied the
performance of a Conjugate Gradient application which uses SpMV, however this study concerns only a
single matrix and is application oriented. To the best of our knowledge, we give the first analysis of the
performance of the coprocessor on these kernels.

We conduct several experiments with 22 matrices from UFL Sparse Matrix Collection1. To have archi-
tectural baselines, we also measured the performance of two dual Intel Xeon processors, X5680 (Westmere)
E5-2670 (Sandy Bridge), and two NVIDIA Tesla R© GPUs C2050 and K20, on these matrices. Overall, Xeon
Phi’s sparse matrix performance is very promising and even better than that of general purpose CPUs and
the GPUs we used in our experiments. Furthermore, its large registers and extensive vector instruction sup-
port boost its performance and make it a candidate for both scientific computing and throughput oriented
server-side code for SpMV/SpMM-based services such as product/friend recommendation.

Having 61 cores and hyperthreading capability can help the Intel Xeon Phi to saturate the memory
bandwidth during SpMV, which is not the case for many cutting edge processors. Yet, our analysis showed
that the memory latency, not the memory bandwidth, is the bottleneck and the reason for not reaching to
the peak performance. As expected, we observed that the performance of the SpMV kernel highly depends
on the nonzero pattern of the matrix and its sparsity: when the nonzeros in a row are aligned and packed in
cachelines in the memory, the performance would be much better. We investigate two different approaches
of densifying the computation either by ordering the matrix via the well known reverse Cuthill-McKee
ordering RCM [5] or changing the nature of the computation by register blocking.

The paper is organized as follows: Section 2 presents a brief architectural overview of the Intel Xeon
Phi coprocessor along with some detailed read and write memory bandwidth micro benchmarks. Section 3
describes the sparse-matrix multiplication kernels and Sections 4 and 5 analyze Xeon Phi’s performance on
these kernels. The performance comparison against other cutting-edge architectures is given in Section 6.
Section 7 concludes the paper.

2 The Intel Xeon Phi Coprocessor

In this work, we use a pre-release KNC card SE10P. The card has 8 memory controllers where each of them
can execute 5.5 billion transactions per second and has two 32-bit channels. That is the architecture can
achieve a total bandwidth of 352GB/s aggregated across all the memory controllers. There are 61 cores
clocked at 1.05GHz. The cores’ memory interface are 32-bit wide with two channels and the total bandwidth
is 8.4GB/s per core. Thus, the cores should be able to consume 512.4GB/s at most. However, the band-
width between the cores and the memory controllers is limited by the ring network which connects them
and theoretically supports at most 220GB/s.

Each core in the architecture has a 32kB L1 data cache, a 32kB L1 instruction cache, and a 512kB L2
cache. The architecture of a core is based on the Pentium architecture: though its design has been updated

1http://www.cise.ufl.edu/research/sparse/matrices/
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to 64-bit. A core can hold 4 hardware contexts at any time. And at each clock cycle, instructions from a
single thread are executed. Due to the hardware constraints and to overlap latency, a core never executes
two instructions from the same hardware context consecutively. In other words, if a program only uses one
thread, half of the clock cycles are wasted. Since there are 4 hardware contexts available, the instructions
from a single thread are executed in-order. As in the Pentium architecture, a core has two different concur-
rent instruction pipelines (called U-pipe and V-pipe) which allow the execution of two instructions per cycle.
However, some instructions are not available on both pipelines: only one vector or floating point instruction
can be executed at each cycle, but two ALU instructions can be executed in the same cycle.

Most of the performance of the architecture comes from the vector processing unit. Each of Intel Xeon
Phi’s cores has 32×512-bit SIMD registers which can be used for double or single precision, that is, either as
a vector of 8×64-bit values or as a vector of 16×32-bit values, respectively. The vector processing unit can
perform many basic instructions, such as addition or division, and mathematical operations, such as sine
and sqrt, allowing to reach 8 double precision operations per cycle (16 single precision). The unit also sup-
ports Fused Multiply-Add (FMA) operations which are typically counted as two operations for benchmarking
purposes. Therefore, the peak performance of the SE10P card is 1.0248 Tflop/s in double precision (2.0496
Tflop/s in single precision) and half without FMA.

2.1 Read-bandwidth benchmarks

We first try to estimate what is the maximum achievable read bandwidth in Xeon Phi. By benchmarking
the performance on simple operations by different number of cores and threads per core, we can have an idea
about where the performance bottlenecks come from. To that end, we choose the array sum kernel which
just computes the sum of large arrays. And we measure the amount of effective (application) bandwidth
reached. To compute the sum, each core first allocates 16MB of data and then each thread reads the whole
data. To minimize cache reusage, each thread starts from a different array. All the results of this experiment
are presented in Figure 1 where the aggregated bandwidth is reported for char and int data types.

First we sum the array as a set of 8-bit integers, i.e., char data type. The benchmark is compiled via -O1

optimization flag so as to prevent the compiler optimizations with possible undesired effects. The results
are shown in Figure 1(a). The bandwidth peaks at 12GB/s when using 2 threads per core and 61 cores.
The bandwidth scales linearly with the number of cores indicating that the benchmark does not saturate
the memory bus. Moreover, additional threads per core do not bring significant performance improvements
which indicates a full usage of the computational resources in the cores. To show that we have plotted
peak effective bandwidth one can expect to achieve if instructions can utilize both pipelines (denoted as Full
Pairing in the figure) or not (denoted as No Pairing). For this particular code, compiled executable have
5 instructions per loop. As seen in the figure, best achieved performance aligns well with No Pairing line,
indicating that those 5 instructions were not paired, and this benchmark is instruction bound.

The second benchmark performs the summation on the arrays containing 32-bit ints. Again, we employ
the -O1 optimization flag. The results are presented in Figure 1(b). This code has 4 instructions in the loop
and process 4 times more data in each instruction, hence the performance is roughly scaled 5 times. The
performance still scales linearly with the number of cores indicating the performance is not bounded by the
speed of the memory interconnect. The peak bandwidth, 60.0GB/s, is achieved by using 4 threads per core.
There is only a small difference with the bandwidth achieved using 3 threads (59.9GB/s), which implies that
the benchmark is still instruction bound. Though we can notice that 2 threads were not enough to achieve
peak bandwidth (54.4GB/s) and at least 3 threads are necessary to hide memory latency.

The third benchmark also considers the array as a set of 32-bit integers but uses vector operations to load
and sum 16 of them at a time, i.e., it processes 512 bits, a full cacheline, at once. The results are presented in
Figure 1(c). The bandwidth peaks at 171GB/s when 61 cores and 4 threads per core are used. This bench-
mark is more memory intensive than the previous ones, and even 3 threads per core can not hide memory la-
tency. Moreover, although it is not very clear in the figure, the bandwidth scales sub-linearly with the increas-
ing number of cores. This indicates the bandwidth is getting closer to the speed of the actual memory bus.

The fourth benchmark tries to improve on the previous one by removing the necessity of hiding the mem-
ory latency via using memory prefetching. The results are presented in Figure 1(d). The bandwidth peaks at
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Figure 1: The read bandwidth obtained by Intel Xeon Phi on our micro-benchmarks containing different array sum
operations. In (a) and (b), an upper bound on bandwidth is computed by the 1.05Ghz core speed where 4 instructions
are required per int and 5 instructions (including an additional casting) is required per char. In (c) and (d), the
theoretical upper bound on maximum bandwidth, max(8.4GB/s × #cores, 220GB/s), due to maximum per core and
ring bandwidths is shown.

183GB/s when 61 cores and 2 threads per core are used (representing 3GB/s per core). The bandwidth with
a single thread per core is relatively worse (149GB/s) and scales linearly with the number of cores. However,
with 2 threads, the performance no longer scales linearly from 24 cores and seems to have almost plateaued
at 61 cores. A single core can sustain 4.8GB/s of read bandwidth when it is alone accessing the memory.

2.2 Write-bandwidth benchmarks

After the read bandwidth, we also want to investigate how write bandwidth behaves with a set of micro
benchmarks in which each thread allocates a local 16MB buffer and fills it with some predetermined value.
The results are presented in Figure 2.

From the previous micro benchmarks on read bandwidth, it should be clear that non-vectorized loops will
not perform well since they will be instruction bound, so we do not consider non-vectorized cases. The first
benchmark uses fills the memory by crafting a buffer in a 512-bit SIMD register and writing a full cache line
at once using the simple store instruction. As shown in Figure 2(a), when all 61 cores are used, a bandwidth
of 65-70GB/s is achieved for each thread per core configuration. The second benchmark writes to memory
using the No-Read hint. This bypasses the Read For Ownership protocol which forces to read a cacheline
even before overwriting its whole content. Note that the protocol is important in case of partial cacheline
updates. The results of that benchmark are presented in Figure 2(b). The achieved bandwidth scales linearly
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Figure 2: The write bandwidth obtained by Intel Xeon Phi on three micro-benchmarks using different
approaches for memsetting the buffer. In (c), the theoretical upper bound on maximum bandwidth due to
maximum per core and ring bandwidths is shown.

up to 100GB/s using 61 cores and 4 threads per core. It also improves linearly with the number of threads
which indicates that the cores are stalling write operations.

The third benchmark uses a different instruction to perform the memory write. Regular write operations
enforces that the writes are committed to the memory in the same order the instructions were emitted. This
property is crucial to ensure the coherency in many shared memory parallel algorithms. The instruction
used in this benchmark allow the writes to be Non-Globally Ordered. (This also uses the No-Read hint).
The results of the benchmark are presented in Figure 2(c). With this instruction, the 100GB/s bandwidth
obtained in the previous experiment is achieved with only 24 cores. The bandwidth peaks at 160GB/s when
all 61 cores are used (representing 2.6GB/s per core). Note that it can be achieved by using a single thread
per core. This instruction allows not to stall the threads until the internal buffer of the architecture is full,
and a single thread can manage to fill it up.A single core can sustain 5.6GB/s of write bandwidth when it
is alone accessing the memory.

3 Sparse Multiplication Kernels

The most well-known sparse-matrix kernel is in the form y← Ax where A is an m×n sparse matrix, and x
and y are n×1 and m×1 column vectors (SpMV). In this kernel, each nonzero is accessed, multiplied with an
x-vector entry, and the result is added to a y-vector entry once. That is, there are two reads and one read-and-
write per each nonzero accessed. Another widely-used sparse multiplication kernel is the sparse matrix-dense
matrix multiplication (SpMM) in which x and y are n× k and m× k dense matrices. In SpMM, there are k
reads and k read-and-writes per each nonzero accessed. The read and write access patterns of these kernels
are given in Figure 3(a). Obtaining good performance for SpMV is difficult almost on any architecture. The
difficulty arises from the sparsity pattern of A which yields a non-regular access to the memory. The amount
of computation per nonzero is also very small. Most of the operations suffer from bandwidth limitation.

An m× n sparse matrix A with τ nonzeros is usually stored in the compressed row (or column) storage
format CRS (or CCS). Two formats are dual of each other. Throughout the paper, we will use CRS hence,
we will describe it here. CRS uses three arrays:

• cids[.] is an integer array of size τ that stores the column ids for each nonzero in row-major ordering.

• rptrs[.] is an integer array of size m+ 1. For 0 ≤ i < m, rptrs[i] is the location of the first nonzero of
ith row in the cids array. The first element is rptrs[0] = 0, and the last element is rptrs[m] = τ . Hence,
all the column indices of row i is stored between cids[rptrs[i]] and cids[rptrs[i+ 1]]− 1.

• val[.] is an array of size τ . For 0 ≤ i < τ , val[i] keeps the value corresponding to the nonzero in cids[i].

There exist other sparse matrix representations [14], and the best storage format almost always depends
on the pattern of the matrix and the kernel. In this work, we use CRS as it constitutes a solid baseline.
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(a) SpMV (b) SpMM

Figure 3: Memory access patterns for SpMV and SpMM. The color blue shows reads and red shows writes.

Since A is represented in CRS, it is a straightforward task to assign a row to a single thread in a parallel
execution. As Figure 3(a) shows, each entry yi of the output vector can be computed independently while
streaming the matrix row by row. While processing a row i, multiple x values are read, and the sum of the
multiplications is written to yi. Hence, there are one multiply and one add operation per nonzero, and the
total number of floating point operations is 2τ .

4 SpMV on Intel Xeon Phi

For the experiments, we use a set of 22 matrices in total whose properties are given in Table 1. The matrices
we are taken from the UFL Sparse Matrix Collection with one exception mesh 2048 which corresponds to
a 5-point stencil mesh in 2D with size 2048 × 2048. We store the matrices in memory by using the CRS
representation. All scalar values are stored in double precision (64-bit floating point). And all the indices
are stored via 32-bit integers. For all the experiments and figures in this section, the matrices are numbered
from 1 to 22 by increasing number of nonzero entries, as listed in the table. For all the experiments, we first
run the operation 70 times and compute the averages of the last 60 operations which are shown in figures
and tables. Caches are flushed between each measurement.

4.1 Performance evaluation

The SpMV kernel is implemented in C++ using OpenMP and processes the rows in parallel. We tested our
dataset with multiple scheduling policies. Figure 4 presents the highest performance obtained when compiled
with -O1 and -O3. In most cases, the best performance is obtained either using 61 cores and 3 threads per
core, or using 60 cores and 4 threads per core. The dynamic scheduling policy with a chunk size of 32 or 64
is typically giving the best results.

When compiled with -O1, the performance obtained varies from 1 to 13GFlop/s. Notice that the differ-
ence of performance is not correlated to the size of the matrix. When compiled with -O3 the performance
rises for all matrices and reaches 22GFlop/s on nd24k. In total, 5 matrices from our set achieve a performance
over 15GFlop/s.

An interesting observation is that the difference on performance is not constant; it depends on the ma-
trix. Analyzing the assembly code generated by the compiler for the SpMV inner loop (which computes the
dot product between a sparse row of the matrix and the dense input vector) gives an insight on why the
performances differ. When -O1 is used, the dot product is implemented in a simple way: the column index
of the nonzero is put in a register. And the value of the nonzero is put in another. Then, the nonzero is
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Table 1: Properties of the matrices used in the experiments. All matrices are square.
max max

# name #row #nonzero density nnz/row nnz/r nnz/c
1 shallow water1 81,920 204,800 3.05e-05 2.50 4 4
2 2cubes sphere 101,492 874,378 8.48e-05 8.61 24 29
3 scircuit 170,998 958,936 3.27e-05 5.60 353 353
4 mac econ 206,500 1,273,389 2.98e-05 6.16 44 47
5 cop20k A 121,192 1,362,087 9.27e-05 11.23 24 75
6 cant 62,451 2,034,917 5.21e-04 32.58 40 40
7 pdb1HYS 36,417 2,190,591 1.65e-03 60.15 184 162
8 webbase-1M 1,000,005 3,105,536 3.10e-06 3.10 4700 28685
9 hood 220,542 5,057,982 1.03e-04 22.93 51 77
10 bmw3 2 227,362 5,757,996 1.11e-04 25.32 204 327
11 pre2 659,033 5,834,044 1.34e-05 8.85 627 745
12 pwtk 217,918 5,871,175 1.23e-04 26.94 180 90
13 crankseg 2 63,838 7,106,348 1.74e-03 111.31 297 3423
14 torso1 116,158 8,516,500 6.31e-04 73.31 3263 1224
15 atmosmodd 1,270,432 8,814,880 5.46e-06 6.93 7 7
16 msdoor 415,863 9,794,513 5.66e-05 23.55 57 77
17 F1 343,791 13,590,452 1.14e-04 39.53 306 378
18 nd24k 72,000 14,393,817 2.77e-03 199.91 481 483
19 inline 1 503,712 18,659,941 7.35e-05 37.04 843 333
20 mesh 2048 4,194,304 20,963,328 1.19e-06 4.99 5 5
21 ldoor 952,203 21,723,010 2.39e-05 22.81 49 77
22 cage14 1,505,785 27,130,349 1.19e-05 18.01 41 41

multiplied with the input vector element (it does not need to be brought to register, a memory indirection
can be used here). The result is accumulated. The nonzero index is incremented and tested for looping
purposes. In other words, the dot product is computed one element at a time with 3 memory indirections,
one increment, one addition, one multiplication, one test, and one jump per nonzero.

The code generated in -O3 is much more complex. Basically, it uses vectorial operations so as to make
8 operations at once. The compiled code loads 8 consecutive values of the sparse row in a 512-bit SIMD
register (8 double precision floating point numbers) in a single operation. Then it populates another SIMD
register with the values of the input vector. Once populated, the two vectors are multiplied and accumu-
lated with previous results in a single Fused Multiply-Add operation. Populating the SIMD register with the
appropriate values of the x is non trivial since these values are not consecutive in memory. One simple (and
inefficient) method would be to fetch them the one after the other. However, Xeon Phi offers an instruction,
vgatherd, that allows to fetch multiple values at once. The instruction takes an offset array (in a SIMD regis-
ter), a pointer to the beginning of the array, a destination register, and a bit-mask indicating which elements
of the offset array should be loaded. In the general case, the instruction can not load all the elements at
once, it can only simultaneously fetch the elements that are on the same cacheline. The instruction needs
to be called as many times as the number of cachelines the offset register touches. So overall, one FMA, two
vector loads (one for the nonzero from the matrix and one for the column positions), one increment, one
test, and some vgatherd are performed for each 8 nonzeros of the matrix.

Figure 5 shows the SpMV performance for each matrix with -O1 and -O3 flags as a function of the useful
cacheline density (UCLD), a metric we devised for the analysis. For each row, we computed the ratio of
the number of nonzeros on that row to the number of elements in the cachelines of the input vector due
to that row. Then we took the average of these values to compute UCLD. For instance, if a row has three
nonzeros, 0, 19 and 20, the UCLD for that single row would be 3

16 since there are three nonzeros spread
on two cachelines of the input vector (the one storing 0-7 and the one storing 18-25). That is the worst
possible value for UCLD is 1

8 = 0.125 when only one element of each accessed cacheline is used and the
best possible value is 1 when the nonzeros are packed into well aligned regions of 8 columns. For each
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Figure 4: Comparing -O1 (No Vect.) and -O3 (Comp. Vect.) for SpMV in Xeon Phi.

matrix of our data set, there are two points in Figure 5, one giving the performance in -O1 (marked with
‘+’s) and one giving the performance in -O3 (marked with ‘×’s). These two points are horizontally aligned
for the same matrix, and the vertical distance between them represents the corresponding improvement on
the performance for the matrix. The performance improvement with vectorization, and in particular with
vgatherd, is significantly much higher when the UCLD is high. Hence, the maximum performance achieved
with vectorial instructions is fairly correlated with UCLD. However, this correlation does not explain what
is bounding the computation. The two most common source of performance bound are memory bandwidth
and floating point instruction throughput. For Intel Xeon Phi, the peak floating point performance of the
architecture is about 1TFlop/s in double precision. Clearly, that is not the bottleneck for our experiments.

4.2 Bandwidth considerations

The nonzeros in the matrix need to be transferred to the core before being processed. Assuming the access
to the vectors do not incur any memory transfer, and since each nonzero takes 12 bytes (8 for the value and
4 for the column index) and incurs two floating point operations (multiplication and sum), the flop-to-byte
ratio of SpMV is 2

12 = 1
6 . For our micro benchmarks, we saw that the sustained memory bandwidth is about

180GB/s, which indicates a maximum performance for the SpMV kernel of 30GFlop/s.
Assuming only 12 bytes per nonzero need to be transfered to the core gives only a naive bandwidth for

SpMV: both vectors and the row indices also need to be transferred. For an n× n matrix with τ nonzeros,
the actual minimum amount of memory that need to be transferred in both ways is 2×n× 8 + (n+ 1)× 4 +
τ × (8 + 4) = 4 + 20× n+ 12× τ . If the density of the matrix is high 12τ will dominate the equation, but
for sparser matrices, 20n should not be ignored. The application bandwidth, which tries to take both terms
into account, is a common alternative cross-architecture measure of performance on SpMV.

Figure 6 shows the bandwidth achieved in our experiments. It shows both naive and actual applica-
tion bandwidths. Clearly, the naive approach ignores a significant portion of the data for some matrices.
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Figure 5: The improvement of -O3 (Comp. Vect.) is linked to cacheline density.

The application bandwidth obtained ranges from 22GB/s to 132GB/s. Most matrices have an application
bandwidth below 100GB/s.

The application bandwidth is computed assuming that every single byte of the problem is transfered
exactly once. This assumption is (mostly) true for the matrix and the output vector. However, it does not
hold for the input vector for two reasons: first, it is unlikely that each element of the input vector will be
used by the threads of a single core, some element will be transferred to multiple cores. Furthermore, the
cache of a Xeon Phi core is only 512kB. The input vector does not fit in the cache for most matrices and some
matrix elements may need to be transfered multiple times to the same core. We analytically computed the
number of cachelines accessed by each core assuming that chunks of 64 rows are distributed in a round-robin
fashion (a reasonable approximation of the dynamic scheduling policy). We performed the analysis with
an infinite cache and with a 512kB cache. We computed the effective memory bandwidth of SpMV under
both assumptions and display them as the top two stacks of the bars in Figure 6. Three observations are
striking: first, the difference between the application bandwidth and estimated actual bandwidth is greater
than 10GB/s on 10 instances and more than 20GB/s on three of them. The highest difference is seen on
2cubes sphere (#2) where the amount of data transferred is 1.7 times larger than the application bandwidth.
Second, there is no difference between the assumed infinite cache and 512kB cache bandwidth. There is only
a visible difference in only two instances: F1 (#17) and cage14 (#22). That is, no cache thrashing occurs.
Finally, even when we take the actual memory transfers into account, the obtained bandwidth is still way
below the architecture peak bandwidth.

To understand the bottleneck of this application in a better way, we present the application bandwidth
of two of the instances for various number of cores and threads per core in Figure 7. We selected these
two instances because they seem to be representative for all the matrices. Most of the instances have a
profile similar to the one presented in Figure 7(a): there is a significant difference between the performance
achieved with 1, 2, 3, and 4 threads. Only 5 matrices, crankseg 2 (#13), pdbHYS (#7), webbase-1M (#8),
nd24k (#18), and torso1 (#14), have a profile similar to Figure 7(b): there is barely no difference between
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Figure 6: Bandwidth achieved on SpMV with different assumptions.

the performance achieved with 3 and 4 threads.
Having that many matrices which show a significant difference between 3 and 4 thread/core performance

indicates that there is no saturation either in the instruction pipeline or in the memory subsystem band-
width. Most likely these instances are bounded by the latency of the memory accesses. As mentioned above,
SpMV perform equally well for only 5 instances with 3 and 4 threads per core. These instances are certainly
bounded by an on-core bottleneck: either the core peak memory bandwidth or the instruction pipeline is full.
Three of the instances, crankseg 2, pdbHYS, and nd24k, achieves an application bandwidth over 100GB/s
and they are certainly memory bandwidth bound. However two of them, webbase-1M and torso1, reach a
bandwidth lesser than 80GB/s.

In both figures, the performance obtained when using 61 cores and 4 threads per core is significantly lower.
We believe that using all the threads available in the system hinders some system operations. However, it is
strange that this effect was not visible in the bandwidth experiments we conducted in Section 2.1 and 2.2.

4.3 A First summary

We summarize what we learned on SpMV with Intel Xeon Phi: maximizing the usefulness of the vgatherd
instruction is the key to optimize the performance: matrices with nonzeros on a row within the same cache-
line (within the same 8-column block in double precision) will get a higher performance. This is similar to
coalesced memory accesses which is crucial for a good performance while using GPUs.

The difference between the application bandwidth and actual used bandwidth can be high because the
same parts of the input vector can be accessed by different cores. Today, cutting edge processors usually
have 4-8 cores sharing an L3 cache. However, the Intel Xeon Phi coprocessor has 61 of them, and hence 61
physically different caches. Thus, an improperly structured sparse matrix could require the same part of the
input vector to be transferred 61 times. This issue is similar to the problem of input vector distribution in
distributed memory SpMV. Moreover, despite the L2 cache of each core is small by today’s standards, we
could not observe a cache thrashing during our experiments. At last, for most instances, the SpMV kernel
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Configuration 8x8 8x4 8x2 8x1 4x8 2x8 1x8
Relative performance .53 .67 .78 .92 .65 .67 .64
# instances improved 0 2 5 8 2 1 1

Table 2: Performance of register-blocking-based implementation relative to the one without register
blocking. The second row presents the geometric means of the relative performance of 22 instances: the
ratio of Gflop/s obtained with register blocking to that of the original implementation.

appears to be memory latency bound rather than memory bandwidth bound.

4.4 Effect of matrix ordering

A widely-used approach to improve the performance of the SpMV operation is ordering the rows/columns of
the input matrix to make it more suitable for the kernel. Permuting a set of row and columns is a technique
used in sparse linear algebra for multiple purposes: improving numerical stability, preconditioning the matrix
to reduce the number of iteration and improving performance. Here, we employ the MATLAB implemen-
tation of the reverse Cuthill-McKee algorithm (RCM) [5]. RCM has been widely used for minimizing the
maximum distance between the nonzeros and the diagonal of the matrix, i.e., the bandwidth of the matrix. It
uses a BFS-like vertex/row order w.r.t. the corresponding graph of the matrix and tries to group the nonzeros
in a region around the diagonal leaving the area away from the diagonal completely empty. We expect that
such a densification of the nonzeros can improve both the UCLD of the matrix and reduce the number of
times the vector needed to be transfered from the main memory to the core caches. The results are presented
in Figure 8. The improvements in performance, useful cacheline density, and vector access are given so that
a positive value is an improvement and a negative value is a degradation. The last metric, Vector Access,
represent the expected number of times the input vector needs to be transferred from the memory.

The performance improvements are given on Figure 8(a). Matrix F1 (#17) obtains the most absolute
improvement which is almost 6GFlop/s. For only 4 matrices, we observe an improvement higher than
2GFlop/s. For most of the matrices, less than 2GFlop/s improvements in the performance are observed,
and for 8 matrices, we observe a degradation. For 6 of these matrices, shallow water1 (#1), mac econ (#4),
pdb1HYS (#7), pre2 (#11), nd24k (#18), and cage14 (#22), an increase can also be observed on the number
of times the input vector is transferred. Hence, RCM made these matrices less friendly for the architecture
and Vector Access is indeed a crucial and correlated metric for the performance of SpMV on Xeon Phi.

4.5 Effect of register blocking

One of the limitations in the original SpMV implementation is that only a single nonzero is processed at a
time. The idea of register blocking is to process all the nonzeros within a region at once. The region should
be small enough that the data associated with it can be stored in the registers so as to minimize memory
accesses [7]. To implement register blocking, we regularly partitioned A to blocks of size a × b. If A has
a nonzero within a region the corresponding block is represented as dense (explicitly including the zeros).
Hence, the matrix reduces to a list of non-empty blocks and we represent this list via CRS. Since the Xeon
Phi architecture has a natural alignment on 512 bits, we chose a block dimension (a or b) to be 8 (8 doubles
takes 512 bits). The other dimension varies from 1 to 8. Each dense block can be represented using either
a row-major order or a column-major order, depending which dimension is of size 8. When 8× 8 are used,
experiments show that there is no significant difference between the two schemes.

To perform the multiplication, each block is loaded (or streamed) into the registers in packs of 8 val-
ues (zeros and nonzeros) allowing the multiplication to be performed using Fused Multiply-Add operations.
Register blocking helps reducing the number of operations needed to process nonzeros inside a block. Fur-
thermore, it can also reduce the size of the matrix: if the matrix has 64 nonzeros in a dense 8× 8 region it
would take 768 bytes in memory with CRS (64× 8 bytes for the value and 64× 4 bytes for the offset). With
register blocking that region is represented in only 516 bytes since only a single offset is required.
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The results obtained with register blocking are summarized in Table 2. We omit the matrix transforma-
tion times and only use the timings of matrix multiplications. Overall, we could not observe an improvement.
Partitioning with 8× 1 blocks is the best scheme and improved performance on 8 instances compared to the
original implementation. When register blocking improved performance it was never by more than 25%. On
average, none of the block sizes helps.

When large blocks are used, the kernel is memory bound (the effective hardware memory bandwidth
reaches over 160GB/s in many matrices with only 3 threads per core). However the average relative per-
formance is worse since the matrices have low locality. In 8 × 8 configuration, less than 35% of the stored
values are nonzeros for most of the matrices. That is less than 23

64 of the transferred memory is useful and
too much memory is wasted. According to our experiments, register blocking only saves memory if 70% of
the values in the blocks are nonzeros. Unfortunately, none of the matrices respect that condition with 8× 8
blocks. However, when the blocks are smaller, the density increases and this explains the increase in relative
performance. 10 matrices have more than 50% density at size 8× 1 (and 2 have more than 70% density).

Our experiments show that register blocking with dense block storage is not very promising for SpMV
on Intel Xeon Phi. Other variants can be still useful: a logical and straightforward solution is storing the
the blocks via a sparse storage scheme and generate the dense representation on-the-fly. A 64bit bitmap
value would be sufficient to represent the nonzero pattern in a block [3]. Such representations would improve
memory usage and increase the relative performance. However, they may not be sufficient to surpass the
original implementation two reasons: if the matrices are really sparse any form of register blocking will
provide only a little improvement. Besides, register blocking does not change the access pattern to the input
vector whose accesses are the one inducing the latency in the kernel.

5 SpMM on Intel Xeon Phi

The flop-to-byte ratio of SpMV limits the achievable performance to at most 30GFlop/s. One simple idea to
achieve more performance out of the Xeon Phi coprocessor is to increase the flop-to-byte ratio by performing
more than one SpMV at a time. In other words, multiplying multiple vectors will allow us to reach a higher
performance. Although not all the applications can take the advantage of the multiple vector multiplication
at a time, some applications such as graph based recommendation systems [10] or eigensolvers (by the use of
the LOBPCG algorithm) [19] can. Multiplying several vectors by the same matrix boils down to multiplying
a sparse matrix by a dense matrix, which we refer to as SpMM. All the statements above are also valid
for existing cutting-edge processors and accelerators. However, with its large SIMD registers, Xeon Phi is
expected to perform significantly better.

In our SpMM implementation for the operation Y ← AX, the dense m × k input matrix X is encoded
in row-major, so each row is contiguous in memory. To process a row Ai∗ of the sparse matrix, a temporary
array of size k is first initialized to zero. Then for each nonzero in Ai∗, a row Xj∗ is streamed to be multi-
plied by the nonzero and the result is accumulated into the temporary array. We developed three variants of
that algorithm for Xeon Phi: the first variant is a generic code which relies on compiler vectorization. The
second is tuned for values of k which are multiple of 8. This code is manually vectorized to load the row
of the vector by blocks of 8 doubles in a SIMD register and perform the multiplication and accumulation
using Fused Multiply-Add. The temporary values are kept in registers by taking the advantage of the large
number of SIMD registers available on Xeon Phi. In the third variant, we use Non-Globally Ordered write
instructions with No-Read hint (NRNGO) and that proved to be fastest in our bandwidth experiments.

We experimented with k = 16 and present the results in Figure 9. In many instances, manual vec-
torization doubles the performance allowing to reach more than 60GFlop/s in 11 instances. The use of
the NRNGO write instructions provides significant performance improvements. The achieved performance
peaks on the matrix pwtk matrix at 128GFlop/s. Figure 9(b) shows the bandwidth achieved by the best
implementation. The application bandwidth surpasses 60GB/s in only 1 instance. The size of the data is
computed as 8×m× k + 8× n× k + (n+ 1)× 4 + τ × (8 + 4). However, since there are 16 input vectors,
the overhead induced by transferring the values in X to multiple cores is much higher when the amount of
data transfers are taken into account while computing the application bandwidth. Once again, the impact
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of having a finite cache is only very small. Hence, similar to SpMV, the cache size is not the problem for
Xeon Phi, but having 61 different caches can be a problem for some applications.

6 Against other architectures

We compare the sparse matrix multiplication performance of Xeon Phi with 4 other architectures including
2 GPU configurations and 2 CPU configurations. We used two CUDA-enabled cards from NVIDIA. The
NVIDIA Tesla C2050 is equipped with 448 CUDA Cores clocked 1.15GHz and 2.6GB of memory clocked at
1.5GHz (ECC on). This machine uses CUDA driver and CUDA runtime 4.2. The Tesla K20 comes with
2,496 CUDA Cores clocked at 0.71GHz and 4.8GB of memory clocked at 2.6GHz (ECC on). This machine
uses CUDA driver and CUDA runtime 5.0. For both GPU configurations, we use the CuSparse library as
implementation. We also use two Intel CPU systems: the first one is a dual Intel Xeon X5680 configuration,
which we call as Westmere. Each processor is equipped with 6 cores clocked at 3.33Ghz and hyperthreading
is disabled. Each processor is equipped with a shared 12MB L3 cache, and each core has a local 256kB L2
cache. The second configuration is a dual Intel Xeon E5-2670, which we denote with Sandy. Each processor
is equipped with 8 cores clocked at 2.6GHz and hyperthreading is enabled. Each processor is equipped with
a shared 20MB L3 cache, and each core has a local 256kB L2 cache. All the codes for both CPU architectures
are compiled with the icc 13.0 with -O3 optimization flag. All kernels are implemented with OpenMP.
For the performance and stability, all runs are performed with thread pinning using KMP AFFINITY. The
implementation used is the same as the one used on Xeon Phi except the vector optimizations in SpMM
where the instruction sets differ.

Results of the experiments are presented in Figure 10. Since we have two GPU and two CPU architec-
tures where one is expected to be better than the other, we present them as stacked bar charts: K20 on
top of C2050 and Sandy on top of Westmere. Figure 10(a) shows the SpMV results: Sandy appears to be
roughly twice faster than Westmere. It reaches a performance between 4.5 and 7.6GFlop/s and achieves the
highest performance for one instance. For GPU architectures, the K20 card is typically faster than the C2050
card. It performs better for 18 of the 22 instances. It obtains between 4.9 and 13.2GFlop/s and the highest
performance on 9 of the instances. Xeon Phi reaches the highest performance on 12 of the instances and it is
the only architecture which can obtain more than 15GFlop/s. Furthermore, it does it for 7 of the instances.

Figure 10(b) shows the SpMM results: Sandy gets twice the performance of the Westmere, which is
similar to their relative SpMV performances. The K20 GPU is often more than twice faster than C2050,
which is much better compared with their relative performances in SpMV. The Xeon Phi coprocessor gets
the best performance in 14 instances where this number is 5 and 3 for the CPU and GPU configurations,
respectively. Intel Xeon Phi is the only architecture which achieves more than 100GFlop/s. Furthermore,
it reaches more than 60GFlop/s on 9 instances. The CPU configurations reach more than 60GFlop/s on 6
instances while the GPU configurations never achieve that performance.

7 Conclusion and Future Work

In this work, we analyze the performance of Intel Xeon Phi coprocessor on SpMV and SpMM. These sparse
algebra kernels have been used in many important applications. To the best of our knowledge, the analysis
gives the first absolute performance results of Intel Xeon Phi.

We showed that the sparse matrix kernels we investigated are latency bound. Our experiments suggested
that having a relatively small 512kB L2 cache per core is not a problem for Intel Xeon Phi. However, hav-
ing 61 cores brings increase/decrease in the usefulness of existing optimization approaches in the literature.
Although it is usually a desired property, having a large number of cores can have a negative impact on the
performance especially if the input data is large and it is required to be transferred to multiple caches. This in-
crease the importance of matrix storage schemes, intra-core locality, and data partitioning among cores. As a
future work, we are planning to investigate such techniques in detail to improve the performance of Xeon Phi.
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Overall, the performance of the coprocessor is very promising. When compared with cutting-edge proces-
sors and accelerators, its SpMV, and especially SpMM, performance are superior thanks to its wide registers
and vectorization capabilities. We believe that Xeon Phi will gain more interest in HPC community in the
near future.
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Figure 7: Strong scaling of application bandwidth for two instances (scheduled with dynamic,64).
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Figure 8: Differences on the performance and metrics when using RCM ordering. A positive value implies
an improvement.
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Figure 10: Architectural comparison between a Intel Xeon Phi coprocessor (Pre-release SE10P), two NVIDIA
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