
教师简介:
邹青松,中山大学计算机学院教授、博士生导师, 科学计算系主任。
广东省计算数学学会理事长,法人。
研究领域:
偏微分方程数值解法
主要研究求解来自于流体(如双曲守恒方程)、材料、金融、电磁等领域偏微分方程的高性能计算方法。
(1) 有限体积法
构造和分析求解PDE的高阶有限体积格式。
(2)深度学习算法
构建求解PDE的函数类和算子类的神经网络代理模型。
2. 分子、材料性质预测
研究预测分子、材料性质的等变图神经网络。
3. 科学智算评测和生态
对来自流体、材料、分子、金融、气象、海洋等多领域的神经网络模型、框架、系统进行评测。
构建包括开发者、研究者、学习者在内的科学智算生态(aisccc.cn)
教育背景:
Sep. 1989–Jul. 1993 Wuhan University, China, Bachelor
Sep. 1993–Jul. 1995 Wuhan University, China, Master
Sep. 1995–Jul. 1996 Universit´e de Rennes 1, Rennes, France, DEA
Sep. 1997–Jul. 2000 Wuhan University, China, Ph.D
工作经历:
Sep. 1996–Feb. 1997 INRIA, Rennes, France
Jun. 2000–Dec. 2001 Chinese Academy of Science,Beijing, China
Jan. 2002–Jun. 2003 West Viginia Univeristy, WV, USA
Aug. 2003–Dec.2012 Sun Yat-sen University , Guangzhou, Associate Professor
Jan. 2013--Present Sun Yat-sen University, Guangzhou, Full Professor
海外经历:
Sep. 1995–Jul. 1996 Universit´e de Rennes 1, Rennes, France, DEA
Sep. 1996--Feb. 1997 INRIA, Rennes, France,Visiting Scholar
Jan. 2002--Jun. 2003 West Viginia Univeristy, WV, USA, Post-doc
Sep. 2005--Dec. 2005 Penn State Univeristy, Pennsylvania, USA,Visiting Scholar
Jan. 2006--Feb. 2006 Syracuse Univeristy, New York, USA,Visiting Scholar
Sep. 2007--Apr. 2009 Freie Universitat Berlin,Berlin, Germany,Alexander von Humboldt Fellow
Mar. 2015--Apr. 2016 Wayne State Univeristy, Detroit, Visting Scholar
科研项目:
1.求解偏微分方程的高精度通用神经网络方法, 人工智能数理交叉重大研究计划培育项目(2024-2026)
2. 科学智算基准评测体系与群智协作社区, 科技创新-2030-新一代人工智能重点项目课题(2023-2026)
3.双曲方程谱有限体积法理论及其应用, 国自然面上(2020-2023)
4. 高次有限体积法构造,理论分析及其应用, 国自然面上 (2016-2019)
5. 若干非线性问题的自适应算法,国自然面上(2013-2016)
6. 若干不连续不光滑非线性问题的数值模拟,广东省自然重点(2017-2020)
7. 基于分子动力学的血栓形成机理的数值模拟 ,重点研发课题(2016-2020)
主要学术兼职:
1. International Journal of Numerical Analysis and Modeling, Associate Editor
2. Mathematics, Associate Editor
3. 广东省计算数学学会理事长,法人
教授课程:
1. 数学分析 I,II,III 2. 数值计算方法 3. 偏微分方程数值方法
4. 数学物理方程 5. 矩阵分析 6. 自适应方法 7.概率论 8.高等数值代数
论著(80多篇):
部分代表性论著
【1】Guo Li, Li Hengguang, and Zou Qingsong*, Interior estimates for finite volume methods over quadrilateral meshes for elliptic equations,
Siam J. Numer. Anal. 57(5), 2246–2265 ,2019
【2】Liu Yujie, Wang Junping, and Zou Qingsong*, A conservative flux optimization finite element method for convection-diffusion equations,
Siam J. Numer. Anal. 57(3), 1238–1262 ,2019
【3】He, Wenming; Zhang, Zhimin; Zou, Qingsong*. Maximum-norms error estimates for high-order finite volume schemes over quadrilateral
meshes. Numer. Math. 138(2): 473-500 , 2018
【4】Zou, Qingsong*; Guo, Li; Deng Quanling. High Order Continuous Local-Conserving Fluxes and Finite-Volume-Like Finite Element
Solutions for Elliptic Equations. SIAM J. Numer. Anal. 55(6): 2666-2686
【5】He, Wen-ming; Zhang, Zhimin; Zou, Qingsong*. Ultraconvergence of high order FEMs for elliptic problems with variable coefficients.
Numer. Math. 136(1): 215-248
【6】Lin, Yanping; Yang, Min; Zou, Qingsong*. L2 error estimates for a class of any order finite volume schemes over quadrilateral meshes.
SIAM J. Numer. Anal. 53(4): 2030-2050,2015
【7】Zhang, Zhimin; Zou, Qingsong*. Vertex-centered finite volume schemes of any order over quadrilateral meshes for elliptic boundary
value problems. Numer. Math. 130(2): 363-393, 2015
【8】 Cao, Waixiang; Zhang, Zhimin; Zou, Qingsong*. Is 2k-conjecture valid for finite volume methods?
SIAM J. Numer. Anal. 53(2): 942-962.
【9】 Cao, Waixiang; Zhang, Zhimin; Zou, Qingsong*. Superconvergence of discontinuous Galerkin methods for linear hyperbolic equations.
SIAM J. Numer. Anal. 52(5):2555-2573,2014
【10】Li, Yonghai; Shu, Shi; Xu, Yuesheng; Zou, Qingsong*. Multilevel preconditioning for the finite volume method.
Math. Comp. 81(279): 1399-1428,2012
【11】 Qingsong Zou, Andreas Veeser, Ralf Kornhuber* and Carsten Graser, Hierarchical error estimates for the energy functional in obstacle
problems. Numer. Math.. 117, 653-677, 2011.
【12】 Ralf Kornhuber* and Qingsong Zou, Efficient and Reliable Hierarchical Error Estimates for the Discretization Error of Elliptic Obstacle
Problems, Math. Comp., 80, 69-80, 2011.
【13】 Jinchao Xu and Qingsong Zou*, Analysis of linear and quadratic simplicial finite volume methods for elliptic equations,
Numer. Math.,111,469- 492,2009.